Method Maker for VB4

Introduction

The Method Maker add-in is a small useful utility that provides the programmer a more complete set
of procedure insertion options.

In this evaluation version, Method Maker provides you with the ability to insert predesigned
procedure templates complete with a general error control block. The error control block can be
edited to fit whatever error handling system you already have in place.

Procedures
Insert Procedures text here

Instalation of Method Maker
The Add-In Manager

Using Method Maker
Evaluation License
Reference

Index

Glossary

Installing Method Maker
Method Maker: Malluf Consulting ________H|

— Procedure Mame

— Maodule o insert into

[Module1 =l

— Praocedure Tupe — Scope of Pracedure

f* Funchion ’7'5' Frivate ¢ Public

" Subroutine

O Let/Get [T &l Local variables static

" Set/Get |rizert Procedune |

e Let Edit Braedune jempate |

" Set

G Exit Help |
Setim Ereferences |

To install Method Maker, first create a directory for containing all of Method maker's files.

Unzip the MMAKE.ZIP file into the directory and from either Explorer or File Manager, doublclick the
MMMaker.EXE file to run it.

It will show a license splash screen. close it from the form's control menu and the instalation will be

complete.

The program will now be entered in your system registry and be made available to your VB4 Add-In
Manger.

That's all there is to installing it!

Add-In Manager
ic [design] |

[Nl Help

Data Manager...
Beport Designer...

Add-ln M anager...

Inzert ky Procedures...

To make Method Maker available to your VB4 development environment, select the Add-ins menu
item, then the Add-In Manager. You'll note in the illustration the 'Insert My Procedures" entry in the
menu illustration. This is the Method Maker menu item that appears in the Add-ins menu after you
have selected Method Maker through the Add-ins manager.

Add-In Manager

Lovailable Add-ns: K

O D ata Form Desigrer Canicel
O File Event Spy Sample Addin
O Microzaft Data Outline Contral 'wizard

.

Help

The Add-ins manager window is displayed here. it shows the MMMaker.MyMaker entry selected. |
know, its a real original name isn't it.

Using Method Maker
Method Maker: Malluf Consulting |

— Pracedure Mame

— Module ko inzert into

I.-’-‘-.I:u::ut j

— Procedure Type— Scope of Procedure

¥ Funchian ’75 Private ¢ Public
" Subroutine
O LetiGet [T Al Local wariables static
" Set/Get [rsert Blacedie I
o

el Edit Bracedure lemplate I
" Set _ I
 Get E xit Help

Setup Ereferences I

The Method Maker form displayed on the left here provides you with several options for inserting
procedures in your code modules.

You'll find that the options normally part of the VB4 IDE are there as well as some additional
enhancements.

The Method Maker will insert your procedure much the same way that the standard IDE method will
with the exception that it will provide your procedure with a standard template that includes a single
entry/exit design and an error handler block that can be customized.

Procedure Types, Scope
Procedure Name
Inserting into a Module
The Procedure Template
Setup Preferences

Method Maker: Malluf Conzulting x|

" Pracedure Mame

IMakeF‘rDcedure

Enter a valid name for the procedure in the Procedure Name window. As you enter a name the Insert
Procedure command button will be enabled. If you delete the name from the Procedure Name text
bos the Insert Procedure button will be disabled.

Try to use a name for you procedure that desribes the procedure's purpose as best you can. An
example of this would be: MakeFunction or MakeLetGet. Both of these functions actually exist in this
program. Note that you can easily tell what they do.

Insert Into Module

— Module to inzert into

About j

HAbout

b ybd aker
Fodulel

" Subroutine | l
From this drop down box you can select the Form, Class, or Bas module to insert the procedure into.

It doesn't have to be the active module, though it will default to the active one when first loaded

Method Maker V1.xx License

W My First YBE4 Add-Inn App :-]

-The Method Maker

Copyright 19395 by Ibrahim Malluf
Malluf Consulting Services

This is an unregistered evaluation
wersion. rou are granted the right to
evaluate this program for 30 days.
Aftar this perod, ifwou should decide
to keep using it please sendin a
registration fee of $15.00 and wou will
recieve the latest release of wersian
1. Send check to lbrahim Malluf
F.0.Box 251, Mariarty, Mk 87035-0251

The Method Maker V1.00 is licensed to you for a period of 30 days to evaluate. After this period you
must either send in the appropriate registration fees for each user in your organization or cease
using it.

Registering with your $15.00 (real cheap) will get you a fully functioning version of this utility along
with whatever enhancements | make to V1xx.

You'll also help me pay for my coffee habit :-)
Please Send Check or Money Order for $15.00 for each copy to:

Ibrahim Malluf
P.0.Box 251

Moriarty, New Mexico 87035-0251
About Malluf Consulting Services

Malluf Consulting Services

Malluf Consulting services is located In Moriarty, New Mexico.
We specialize in Microsoft Windows development using the following tools:

Visual Basic 4.0 Enterprise Edition by Microsoft
SQL Server 6.0 Client/Server Database Development System by Microsoft

Microsoft Office Professional 95

Microsoft Back Office Products

We develop for all of the Microsoft platforms listed below. We create applications to your
specifications to perform across any network supported by these platforms as well as on the Internet
meeting the most stringent of requirements

e Microsoft Windows 3.11 & Microsoft Windows For Workgroups 3.11
e Microsoft Windows 95
e Microsoft Windows NT 3.51 Server and Work Station

ndex

HEEEEEEEEEREEEEEEEEEEEREE R] —

>

Add ins
C

Command_Buttons
Contents

E

Edit Procedure Template
F

Eunction_Procedures
G
Glossary

nde
Insert Module
Insert Procedure

X

Install
M

Malluf Consulting
Method Maker_License

Method_Exit

Method Help
P

Procedure Name

Procedure Scope
Procedure Types
Property Get
Property Let
Property Procedures
Property Set

S

Setup Preferences
Subroutine Procedures

U
Using Method Maker

Glossary

L]z)= m][ol af|wfjw ol =] =] =] =l =l =] =] ol o el al=l S =] =] ==~

Command Buttons

Inzert Procedure I

Edit Eracedure emplate I

Exit Help |

Setum Ereferences |

As you can see there are five command buttons. Three of them are available in the evaluation
version you now have. The other two will be available with the registered version. Hey, what do you
want for nuthin! A lot of you will probably just use this tool as is without registering.

| got to have some kind of incentive, right?

Insert Procedure

Edit Procedure Template

Exit

Help

Setup Preferences

Insert Procedure
This command becomes available when the Procedure Name text box has more than two characters
in it. Why two characters? Just because!

When you select this command the selected procedure(s) are inserted into the specified code
container.

Edit Procedure Templates

Not until you send me that $15.00!

When you do send it, I'll send you the version that allows you to create your own brand of standard

procedure templates. You'll be able to include whatever header information you want, as well as
other structures that your particular needs require.

Method Maker Help

Geeeeze Louize, you're already using it. (stole the Geeeze Louize from another programmer)

Setup Preferences

This Setup Prefere's registered users
So | nag alot. | could use the 15 bucks and you can use this program. so send it.

e Choose Default Values

e Toggle always on top property

e Default procedure headers

¢ Send in suggestions and | might add them here!

Function Procedures

Private Function MakeFunction()
'error call
On Error GoTo BadMakeFunction

'single exit block
ExitMakeFunction:

Exit Function
'error routine block
BadMakeFunction:
'Show error in message box if the
'show error preference is true
If colPreferences ("2howError™) Then
M=sgEox Error
End If
'set function to false
MakeFunction = False
Besume ExitMakeFunction
End Function

This is an example of the function procedure template.

two jump labels are created, one for the exit block and the other for the error block.

The error block can be modified to fit your purposes through a text file called ErrBody.Txt
Future versions will allow you to fully cutomize the body of each type of procedure.

The above structure represents my prefered method of programming. Both a sucessful and failed
execution should always exit at the same place. This way any procedure cleanup that is needed
gets done regardless and no code need be duplicated. Future versions will allow you to apply your
own coding philosophy to this structure. For now, only the error block is custumizable.

Method Maker Exit

See, I'm really a nice guy and not completely mercenary. | left a way for you to exit the program
without charging extra for it

Procedure Scope
"Scnpe of Procedure

% Private © Public

[T &l Local wariables static

The default scope of procedures when using Method Maker is Private. This is the opposite of the VB-
IDE which defaults to public. | guess its a matter of opinion, and my opinion is that the default should
always be Private. If you want the default to be Public then register Method Maker and you'll be able
to set your own defaults.

Anyway, you can select Public if you want the procedure to be public. You can also select the All
Local Variables Static box to declare the procedures local variables automatically static.

Procedure Types

Visual Basic provides three types of procedures. They are the Function, Subroutine, and Property
procedures. They all have their particular applicability with a certain amount of overlap. The Function
and Subroutine procedures have been part of Visual Basic since the beginning. The Property
Procedures on the other hand are entirely new to Visual Basic being introduced with VB 4.0

Function Procedures
Subroutine Procedures

Property Procedures

Subroutine Procedures

Private Subh FindComponentsi()

'set up Jjump to error block

On Error GoTo BadFindComponents
'exit block
ExitFindComponents:

Exit Sub
'error block
EadF indComponents:
'Show error in mwessage box if the
's2how error preference iz true
If colPreferences ("ShowError™) Then
M=gEBox Error
End If
Fezume ExitFindComponents
End Suhb

This is an example of the subroutine procedure template.
Two jump labels are created, one for the exit block and the other for the error block.
The error block can be modified to fit your purposes through a text file called ErrBody. Txt

Future versions will allow you to fully cutomize the body of each type of procedure.

The above structure represents my prefered method of programming. Both a sucessful and failed
execution should always exit at the same place. This way any procedure cleanup that is needed
gets done regardless and no code need be duplicated. Future versions will allow you to apply your
own coding philosophy to this structure. For now, only the error block is custumizable.

Property Procedures: Let/Set/Get

The Property Procedures are new in Visual Basic 4.0. They provide a secure way of exposing your
object values. They directly replace Global variables in a dramatic fashion. Now you can control the
changing of any value in your application in one place complete with validation rules.

There are three Property Procedures. They are:

Property Let Procedure
Property Set Procedure

Property Get Procedure

The Let and Set Property Procedures allow the changing of a value within the rules laid out within the
procedure.

The Get Property Procedure allows the Reading of a Value within the rules laid out within the
procedure.

In order to make an object value a read/write value you must provide a matching pair of properties
such as Let/Get or Set/Get. You will find that the Method Maker gives you the choice of making these
matched sets, or of creating a write-only or read-only property. The standard VB IDE automatically
provides matched pairs only. To have a read-only or write-only with the standard IDE you must delete
one of the procedures

Property Let Procedure

Friwvate Property Let Zelection(vNeuwValue)
'set up Jjump to error block
On Error “oTo Bad3election

'exit block

Exit3election:

Exit Property
'error block
BEadZelection:
'Show error in mwessage box if the
's2how error preference iz true=
If colPreferences ("ShowError™) Then
M=gEBox Error
End If
Resume ExitZelection
End Property
The Property Let Procedure provides a way for you to modify the value of an object's internal
variables while maintaining full control of validating the changes.

You can also initiate any kind of action when this property value is affected.

The above structure represents my prefered method of programming. Both a sucessful and failed
execution should always exit at the same place. This way any procedure cleanup that is needed
gets done regardless and no code need be duplicated. Future versions will allow you to apply your
own coding philosophy to this structure. For now, only the error block is custumizable.

Property Set Procedure

FPriwvate Property Jet Preferences (vHewWalue)
'set up junp to error bhlock
On Error GoTo BadPreferences

'exit bhlock

ExitPreferences:

Exit Property
'error block
BadPreferences:
'Show error in message hox 1f the
'show error preference iz true=
If colPreferences ("2howError™) Then
M=gEBox Error
End If
Fesume ExitPreferences
End Property

The Property Set procedure is used to pass an Object reference to a Form, Class, or Bas module.
Two jump labels are created, one for the exit block and the other for the error block.
The error block can be modified to fit your purposes through a text file called ErrBody. Txt

The above structure represents my prefered method of programming. Both a sucessful and failed
execution should always exit at the same place. This way any procedure cleanup that is needed
gets done regardless and no code need be duplicated. Future versions will allow you to apply your
own coding philosophy to this structure. For now, only the error block is custumizable.

Property Get Procedure

Priwvate Property Get Preferences()
'set up Jjump to error block
On Error GoTo BadPreferences

'exit block

ExitPreferences:

Exit Property
'error block
BadPreferences:

'3how error in message box if the

'show error preference iz true

If colPreferences ("ZhowError™) Then

M=gBox Error

End If

Fesume ExitPreferences
End Property
The Property Get Procedure provides the read part of an object property. It must be declared as a
type that matches the value it exposes. If it is a string then you declare it As String, if it is a collection
then you declare it As Collection, and so on.

The above structure represents my prefered method of programming. Both a sucessful and failed
execution should always exit at the same place. This way any procedure cleanup that is needed
gets done regardless and no code need be duplicated. Future versions will allow you to apply your
own coding philosophy to this structure. For now, only the error block is custumizable.

